47 research outputs found

    Transport processes in and above two-dimensional urban street canyons under different stratification conditions: results from numerical simulation

    Get PDF
    Thermal stratification (neutral, unstable and stable) plays an important role in determining the transport processes in and above urban street canyons. This paper summarizes the recent findings of the effect of thermal stratification on the transport of momentum, heat, and pollutants in the two-dimensional (2D) urban street canyons in the skimming flow regime. Special attention is paid to the results from large-eddy simulations (LESs), while other experimental and numerical results are referred to when necessary. With increasing Richardson number, Ri, the drag coefficient of the 2D street canyon as felt by the overlying atmosphere decreases in a linear manner. Under neutral and stable stratification, a nearly constant drag coefficient of 0.02 is predicted by the LESs. Under unstable stratification, the turbulent pollutant transport is dominated by organized turbulent motions (ejections and sweeps), while under stable stratification, the unorganized turbulent motion (inward interactions) plays a more important role and the sweeps are inhibited. The unstable stratification condition also enhances the ejections of turbulent pollutant flux, especially at the leeward roof-level corner, where the ejections dominate the turbulent pollutant flux, outweighing the sweeps. With increasing Ri, both the heat (area active scalar source) and pollutant (line passive scalar source) transfer coefficients decrease towards a state where the transfer coefficients become zero at Ri≈0.5. It should be noted that, due to the limit of the 2D street canyon configuration discussed in this paper, great caution should be taken when generalising the conclusions drawn here.Singapore. National Research FoundationSingapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelin

    Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Get PDF
    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.Singapore National Research Foundation (Singapore-MIT Alliance for Research and Technology (SMART)

    THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    Get PDF
    In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow and dispersion are investigated for several Richardson numbers. The analysis focuses on the influence of street canyon geometry on flow and temperature distribution, by considering different aspect ratios W/H canyon between 0.5 and 2, where W is the width and H the height of the street canyon. Three-dimensional effects are observed, depending on L/H, where L is the length of the canyon. Three dimensional effects become negligible for aspect ratio L/H larger than 20. Results obtained for the case with a large Richardson number show that dispersion patterns in a street canyon differ substantially the isothermal case. In case with windward heating large concentration values are found close to the windward wall. Our findings can be of interest for many urban environment applications in which natural ventilation and thermal comfort are being of concern

    Integrated Urban Sensing: A Geo-sensor Network for Public Health Monitoring and Beyond

    Get PDF
    Pervasive environmental monitoring implies a wide range of technical, but also socio-political challenges, and this applies especially to the sensitive context of the city. In this paper, we elucidate issues for bringing out pervasive urban sensor networks and associated concerns relating to fine-grained information provision. We present the Common Scents project, which is based on the Live Geography approach, and show how it can overcome these challenges. As opposed to hitherto sensing networks, which are mostly built up in monolithic and closed systems, the Common Scents approach aims to establish an open, standards based and modular infrastructure. This ensures interoperability, portability and flexibility, which are crucial prerequisites for pervasive urban sensing. The implementation – a real-time data integration and analysis system for air quality assessment – has been realised on top of the CitySense sensor network in the City of Cambridge, MA US together with the city’s Public Health Department responding to concrete needs of the city and its inhabitants. The second pilot using mobile sensors mounted on bicycles has been deployed in Copenhagen, Denmark. Preliminary results show highly fine-grained variability of pollutant dispersion in urban environments.Singapore-MIT Alliance. Center for Environmental Sensing and MonitoringSingapore-MIT Alliance for Research and Technology CenterEuropean Commission (FP7 GENESIS project)Bundesministerium für Wissenschaft und ForschungResearch Studio iSPAC

    “Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution

    Get PDF
    Air pollution is now recognized as the world’s single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions. Therefore, in the first study of it is kind, we use measured population activity patterns representing several million people to evaluate population-weighted exposure to air pollution on a city-wide scale. Mobile and wireless devices yield information about where and when people are present, thus collective activity patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New York City (NYC), herein termed “Active Population Exposure” was evaluated using population activity patterns and spatiotemporal PM2.5 concentration levels, and compared to “Home Population Exposure”, which assumed a static population distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts within NYC in both scenarios. These were more centralized for the “Active Population Exposure” scenario. Population-weighted exposure computed in each district of NYC for the “Active” scenario were found to be statistically significantly (p < 0.05) different to the “Home” scenario for most districts. In investigating the temporal variability of the “Active” population-weighted exposures determined in districts, these were found to be significantly different (p < 0.05) during the daytime and the nighttime. Evaluating population exposure to air pollution using spatiotemporal population mobility patterns warrants consideration in future environmental epidemiological studies linking air quality and human health

    Ultrafine particles in cities

    Get PDF
    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts

    A MODEL EVALUATION PROTOCOL FOR URBAN SCALE FLOW AND DISPERSION MODELS

    Get PDF
    This paper reports on a comprehensive model evaluation protocol for urban scale flow and dispersion models that has been developed within the framework of the COST action 732 on Quality Assurance and Improvement of Micro-Scale Meteorological Models. It briefly discusses the different components forming model evaluation with particular emphasis on model validation and on the implementation of the protocol for a specific test case: the MUST (Mock Urban Setting Test) experiment. The protocol was first developed with building-resolving models in mind, but more traditional integral models have also been included. Currently the Action is finalising the MUST exercise results and will suggest the best approach for further model evaluation and for the standardization of CFD modelling practise for micro-scale meteorological applications
    corecore